Q:

A circle is centered at the point (5, -4) and passes through the point (-3, 2).The equation of this circle is (x +__ )^2 + (y +__ )^2 = __

Accepted Solution

A:
Answer:The answer to your question is    (x - 5)² + (x + 4) = 100Step-by-step explanation:DataCenter = (5, -4)Point = (-3, 2)Process1.- Calculate the length of the radiusFormula       d = [tex]\sqrt{(x2-x1)^{2} + (y2 - y1)^{2}}[/tex]Substitution      d = [tex]\sqrt{(-3-5)^{2}+ (2 + 4)^{2}}[/tex]Simplification      d = [tex]\sqrt{(-8)^{2}+ (6)^{2}}[/tex]      d= [tex]\sqrt{64 + 36}[/tex]      d = [tex]\sqrt{100}[/tex]      d = 10 2.- Get the equation of the line      h = 5    k = -4    r = 10      ( x - 5)² + (y + 4)² = 10²Simplification and result                                (x - 5)² + (x + 4) = 100