Q:

Find the indefinite integral. (remember to use absolute values where appropriate. use c for the constant of integration.) x2 − 22x dx

Accepted Solution

A:
Answer:[tex]\displaystyle \int {(x^2 - 22x)} \, dx = \frac{x^3}{3} - 11x^2 + C[/tex]General Formulas and Concepts:CalculusIntegrationIntegrals[Indefinite Integrals] Integration Constant CIntegration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]Integration Property [Addition/Subtraction]:                                                       [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]Step-by-step explanation:Step 1: DefineIdentify[tex]\displaystyle \int {(x^2 - 22x)} \, dx[/tex]Step 2: Integrate[Integral] Rewrite [Integration Property - Addition/Subtraction]:               [tex]\displaystyle \int {(x^2 - 22x)} \, dx = \int {x^2} \, dx - \int {22x} \, dx[/tex][2nd Integral] Rewrite [Integration Property - Multiplied Constant]:         [tex]\displaystyle \int {(x^2 - 22x)} \, dx = \int {x^2} \, dx - 22\int {x} \, dx[/tex][Integrals] Reverse Power Rule:                                                                   [tex]\displaystyle \int {(x^2 - 22x)} \, dx = \frac{x^3}{3} - 22 \Big( \frac{x^2}{2} \Big) + C[/tex]Simplify:                                                                                                         [tex]\displaystyle \int {(x^2 - 22x)} \, dx = \frac{x^3}{3} - 11x^2 + C[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)Unit:  Integration