Q:

Find the indefinite integral. (use c for the constant of integration.) sech8 x tanh x dx

Accepted Solution

A:
Answer:[tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = -\frac{sech^8(x)}{8} + C[/tex]General Formulas and Concepts:CalculusDifferentiationDerivativesDerivative NotationDerivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]IntegrationIntegrals[Indefinite Integrals] Integration Constant CIntegration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]Integration Property [Multiplied Constant]:                                                         [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]U-SubstitutionStep-by-step explanation:Step 1: DefineIdentify[tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx[/tex]Step 2: Integrate Pt. 1Identify variables for u-substitution.Set u:                                                                                                             [tex]\displaystyle u = sech^8(x)[/tex][u] Differentiate [Hyperbolic Differentiation, Chain Rule]:                           [tex]\displaystyle du = -8sech^8(x)tanh(x) \ dx[/tex]Step 3: integrate Pt. 2[Integral] Rewrite [Integration Property - Multiplied Constant]:                 [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = \frac{-1}{8}\int {-8sech^8(x)tanh(x)} \, dx[/tex][Integral] U-Substitution:                                                                              [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = \frac{-1}{8}\int {} \, du[/tex][Integral] Reverse Power Rule:                                                                     [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = \frac{-u}{8} + C[/tex]Back-Substitute:                                                                                             [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = -\frac{sech^8(x)}{8} + C[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)Unit:  Integration