Q:

What is the value of log7 343

Accepted Solution

A:
Answer:The value of given expression  [tex]log_7343[/tex] is 3. Step-by-step explanation:  Given: [tex]log_7343[/tex]We have to find the value of given expression  [tex]log_7343[/tex]Consider  the given expression  [tex]log_7343[/tex]Rewrite 343 in  base- power form as [tex]343=7^3[/tex]We have [tex]=\log _7\left(7^3\right)[/tex]Apply log rule, [tex]\log _a\left(x^b\right)=b\cdot \log _a\left(x\right)[/tex]We have , [tex]\log _7\left(7^3\right)=3\log _7\left(7\right)[/tex]Again Apply log rule [tex]\log _a\left(a\right)=1[/tex]we have [tex]\log _7\left(7\right)=1[/tex]Thus, [tex]3\log _7\left(7\right)=3[/tex]Thus, the value of given expression  [tex]log_7343[/tex] is 3.