Q:

find the first, second and third derivatives 1-y=5x5+3x4+x

Accepted Solution

A:
First Derivative: $$\[y = 5x^5 + 3x^4 + x\]$$ $$\[y' = \frac{d}{dx}(5x^5) + \frac{d}{dx}(3x^4) + \frac{d}{dx}(x)\]$$ $$\[y' = 5 \cdot 5x^{5-1} + 3 \cdot 4x^{4-1} + 1\]$$ $$\[y' = 25x^4 + 12x^3 + 1\]$$ Second Derivative: $$\[y' = 25x^4 + 12x^3 + 1\]$$ $$\[y'' = \frac{d}{dx}(25x^4) + \frac{d}{dx}(12x^3) + \frac{d}{dx}(1)\]$$ $$\[y'' = 25 \cdot 4x^{4-1} + 12 \cdot 3x^{3-1}\]$$ $$\[y'' = 100x^3 + 36x^2\]$$ Third Derivative: $$\[y'' = 100x^3 + 36x^2\]$$ $$\[y''' = \frac{d}{dx}(100x^3) + \frac{d}{dx}(36x^2)\]$$ $$\[y''' = 100 \cdot 3x^{3-1} + 36 \cdot 2x^{2-1}\]$$ $$\[y''' = 300x^2 + 72x\]$$