Q:

The Toylot company makes an electric train with a motor that it claims will draw an average of only 0.8 ampere (A) under a normal load. A sample of nine motors was tested, and it was found that the mean current was x = 1.32 A, with a sample standard deviation of s = 0.44 A. Do the data indicate that the Toylot claim of 0.8 A is too low? (Use a 1% level of significance.)

Accepted Solution

A:
Answer:The data indicate that toylot claim   t(s)  =  -  3,54Step-by-step explanation:T student distributionsample size   n  = 9      df =  n  -  1    df  =  9  -  1    df  = 8sample mean     μ  =  1.32sample standard deviation     σ   =  0,441.- Test  hypothesis      H₀           null hypothesis        μ₀  =    0,8 Hₐ   alternative hypothesis    μ₀  <    0,82.- Critical value Confidence interval   99 %        α  =  0,01    and  df  =  8t(c)  = - 2.8965      3.-Compute t(s)t(s)  =  [  (  μ  -   μ₀  ) / s/√n ]     t(s)  =  - 0,52 * 3/ 0,44      t(s)  = - 3.54 4.- Compare  t(s)   and  t(c)t(s) is far away in the rejection region. The data indicate that toylot claim is too low